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Abstract. Steady-state heat conduction is considered for perforated thin plates with non-insulated facial surfaces.
The heat conductivities of the materials and the convection coefficients are assumed piecewise constant. Influ-
ence functions of point sources are analytically obtained for some such plates of standard shape. Their singular
components are derived in a closed form, ensuring accurate straightforward computer implementations. Special
integral representations are then used for obtaining influence functions of a point source for perforated plates.
Computability of those representations is tested with a number of illustrative examples.
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1. Introduction

Although the influence (Green’s) function-based methods are proven to be productive [1–6]
in solving certain problem classes in applied mechanics, an extensive employment of these
methods in engineering science is still limited and is not commensurate with their potential
power. One of the reasons that keeps the engineering community hesitant about the wide use
of these methods is a lack of readily computable representations of influence functions of
a point source in literature. This observation has motivated the author’s involvement in the
present project.

As it is known [7, Chapter 4], the Green’s function of the Dirichlet problem for Laplace’s
equation over a simply connected region D can be written as

G(z, ζ ) = 1

2π
log

∣∣∣∣∣1−w(z)w(ζ )

w(z)−w(ζ )

∣∣∣∣∣ ,
where w(z) represents a complex-variable function that delivers conformal mapping of D

onto the interior of the unit circle, with z and ζ standing for the observation and the source
point, respectively, and where the bar on w(ζ ) denotes the complex conjugate. Note that only
for a few regions of standard shape, w(z) represents an elementary function. That is why
influence functions of a point source, even for thin plates made of a homogeneous isotropic
material, with the facial surfaces insulated, are available in closed form only for a few standard
plate configurations, such as half-plane, infinite wedge, circle, circular sector, infinite, and
semi-infinite strip.

For a much broader set of plate configurations and boundary conditions different from
the Dirichlet type, influence functions are constructible in a series form like, for instance,
the classical double Fourier-series expansion for a rectangular plate. Note however that, as
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to numerical implementations, a series appearance of influence functions has a notable draw-
back. Indeed, such series do not converge uniformly because of the singularity of influence
functions.

Clearly, the convergence rate of series expansions of influence functions is reduced if the
latter is differentiated, which is always a necessity in numerical procedures that are based on
influence-function-based methods, as some versions of the boundary-element method, for ex-
ample. Work towards increasing the practicality of influence functions has resulted in notable
progress in the past decades [8–10] in improving the convergence rate of series representations
of such functions. In this regard a brief comment is appropriate. The author of [10] failed to
cite very similar work on the subject (see, for example, [8]) that was published much earlier.

In this study we aim at obtaining some readily computable representations of influence
functions of a point source for perforated thin plates with non-insulated facial surfaces and
with piecewise constant heat conductivities of the materials of which the plates are made. To
outline the novelty of this study, we refer the reader to the recent benchmark monograph [4,
Chapter 5] that analyzes the status quo and reviews current trends in the field of applications
of Green’s functions. Note also that, although Green’s functions have recently [5, 6] been
constructed for some advanced material (inhomogeneous and anisotropic) systems, so far
there has not been proposed an approach for obtaining such functions for multiply connected
regions of complex configuration filled with piecewise homogeneous materials to which the
present work is, in fact, devoted.

2. Plates of standard shape

The technique proposed earlier [2, Chapter 7] for an analytical construction of Green’s func-
tions for potential problems posed on compound regions, is extended, in this section, to some
steady-state heat-conduction problems for compound plates of standard configuration with
non-insulated facial surfaces.

2.1. INFINITE STRIP-SHAPED PLATE

Let a thin plate, whose middle plane occupies an infinite strip-shaped region D, be composed
of two fragments D1 = {−∞ < x < 0, 0 < y < b} and D2 = {0 < x < ∞, 0 < y < b},
each of which is made of a homogeneous isotropic material, with λ1 and λ2 representing their
coefficients of heat conduction. Consider the boundary-contact-value problem

ui(x, 0) = ui(x, b) = 0, (1)

|u1(−∞, y)| < ∞, |u2(∞, y)| < ∞, (2)

u1(0, y) = u2(0, y),
∂u1(0, y)

∂x
= λ

∂u2(0, y)

∂x
(3)

defined on D for the so-called [11, Chapter 9] static Klein-Gordon equation

∇2ui(x, y)−k2
i ui(x, y)=−fi(x, y), (x, y)∈Di, i =1, 2, (4)

where λ = λ2/λ1, ∇2 is the Laplace operator, and the parameters k2
i are directly proportional

to the convection coefficients through the plate’s facial surfaces.
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The k2
i ui(x, y) term in Equation (4) simulates the Newtonian convection through the plate’s

facial surfaces. The case of insulated faces results in k2
i = 0 and the governing equation (4)

reduces to the standard Laplace form.
To obtain an analytic form of the influence function of a point source for the plate, we

expand the functions ui(x, y) and fi(x, y) in Fourier series

ui(x, y) =
∞∑

n=1

ui,n(x) sin(νy), ν= nπ

b
, i = 1, 2 (5)

and

fi(x, y) =
∞∑

n=1

fi,n(x) sin(νy), i = 1, 2 (6)

and substitute these in Equatons (1–4). This yields the following three-point boundary-contact-
value problem

d2u1,n(x)

dx2
−(ν2+k2

1)u1,n(x)=−f1,n(x), x ∈(−∞, 0), (7)

d2u2,n(x)

dx2
−(ν2+k2

2)u2,n(x)=−f2,n(x), x ∈(0,∞), (8)

|u1,n(−∞)| < ∞, |u2,n(∞)| < ∞, (9)

u1,n(0) = u2,n(0),
du1,n(0)

dx
= λ

du2,n(0)

dx
(10)

in the coefficients of the expansion in Equation (5). With the method of variation of parameters
in hand, the solution to the above setting is obtained as

u1,n(x) = 1

2h1

∫ x

−∞

[
e−h1(x−ξ) − eh1(x−ξ)

]
f1,n(ξ)dξ

+
∫ 0

−∞
(h1−λh2)eh1(x+ξ) + (h1+λh2)eh1(x−ξ)

2h1(h1+λh2)
f1,n(ξ)dξ +

∫ ∞

0

λ

h1+λh2
eh1x−h2ξf2,n(ξ)dξ

and

u2,n(x) = 1

2h2

∫ x

0

[
e−h2(x−ξ) − eh2(x−ξ)

]
f2,n(ξ)dξ +

∫ 0

−∞
1

h1+λh2
eh1x−h2ξf1,n(ξ)dξ

+
∫ ∞

0

(h1+λh2)eh2(x−ξ) − (h1−λh2)e−h2(x+ξ)

2h1(h1+λh2)
f2,n(ξ)dξ,

where hi =
√

ν2+k2
i , (i = 1, 2).

We rewrite these in a compact form as

u1,n(x) =
∫ 0

−∞
gn

11(x, ξ)f1,n(ξ)dξ +
∫ ∞

0
gn

12(x, ξ)f2,n(ξ)dξ (11)
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and

u1,n(x) =
∫ 0

−∞
gn

21(x, ξ)f1,n(ξ)dξ +
∫ ∞

0
gn

22(x, ξ)f2,n(ξ)dξ, (12)

where the kernel functions gn
ij (x, ξ) are expressed as

gn
11(x, ξ) = (h1+λh2)e−h1|x−ξ | + (h1−λh2)eh1(x+ξ)

2h1(h1+λh2)
(13)

with both variables x and ξ belonging to the segment (−∞, 0],

gn
12(x, ξ) = λ

h1+λh2
eh1x−h2ξ , −∞ < x ≤ 0, 0 ≤ ξ < ∞,

gn
21(x, ξ) = 1

h1+λh2
eh1x−h2ξ , 0 ≤ x < ∞, −∞ < ξ ≤ 0

and

gn
22(x, ξ) = (h1+λh2)e−h2|x−ξ | − (h1−λh2)e−h2(x+ξ)

2h2(h1+λh2)
(14)

with both variables x and ξ belonging to the segment [0,∞).
Clearly, the coefficients fi,n(ξ) of the expansions in Equation (6) can be expressed in terms

of the right-hand-side functions fi(ξ, η) of Equation (4) as

fi,n(ξ) = 2

b

∫ π

0
fi(ξ, η) sin(νη)dη, i = 1, 2.

By substituting these in Equations (11) and (12) and then in Equation (5), one obtains the
solution to the problem in (1–4) in the form

ui(x, y) =
∫ π

0

∫ 0

−∞

(
2

b

∞∑
n=1

gn
i1(x, ξ) sin(νy) sin(νη)

)
f1(ξ, η)dξdη

+
∫ π

0

∫ ∞

0

(
2

b

∞∑
n=1

gn
i2(x, ξ) sin(νy) sin(νη)

)
f2(ξ, η)dξdη, (x, y)∈Di.

Thus, the kernels

Gij (x, y; ξ, η) = 2

b

∞∑
n=1

gn
ij (x, ξ) sin(νy) sin(νη) (15)

of the above representation for ui(x, y) determine the influence function of a point source
that we are looking for. It is important to note that the subscripts in Gij (x, y; ξ, η) specify the
subregions of D to which the observation and the source point belong. That is, (x, y)∈Di and
(ξ, η)∈Dj .

Note that, in dealing with influence functions for compound regions of the kind con-
sidered in this study, it is convenient to use a notion of the matrix of Green’s type that has
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been introduced in our earlier works [2, Chapter 7]. This notion most adequately reflects
the matrix format of influence functions for compound regions. Accordingly, the functions
Gij (x, y; ξ, η) will be referred to, in what follows, as the entries of the matrix of Green’s type
of the boundary-contact-value problem posed with Equations (1–4).

2.1.1. Splitting off the singular component
The fundamental solution for the static Klein-Gordon equation in two dimensions yields the
same logarithmic-type singularity as the Laplace equation has. This causes for the series in
(15) not to converge uniformly for the main diagonal entries of the matrix of Green’s type,
whereas it converges uniformly for the other two entries.

A special approach is used herein as suggested in [8] to split off the singular components
of G11(x, y; ξ, η) and G22(x, y; ξ, η) and to accelerate the convergence rate of the series
representing the regular components.

From the analysis of the series in (15), it follows that the singularity of the entries G11(x, y;
ξ, η) and G22(x, y; ξ, η) is associated with the first exponential terms of the coefficients
gn

11(x, ξ) and gn
22(x, ξ) (see Equations (13) and (14)). Recalling the coefficient gn

11(x, ξ), for
example, we isolate first the singularity containing term in G11(x, y; ξ, η)

G11(x, y; ξ, η) = 1

b

∞∑
n=1

e−h1|x−ξ |

h1
sin(νy) sin(νη)

+1

b

∞∑
n=1

(h1−λh2)eh1(x+ξ)

h1(h1+λh2)
sin(νy) sin(νη) (16)

and then apply the following transformation to it

1

b

∞∑
n=1

e−h1|x−ξ |

h1
sin(νy) sin(νη) = 1

b

∞∑
n=1

[
e−h1|x−ξ |

h1
− e−ν|x−ξ |

ν

]
sin(νy) sin(νη).

+1

b

∞∑
n=1

e−ν|x−ξ |

ν
sin(νy) sin(νη) (17)

It can readily be shown that the first of the above two series converges uniformly for any
interior location of the source and the observation point. To justify this statement, we evaluate
the modulus of its N-th remainder

|RN(x, y; ξ, η)| =
∣∣∣∣∣

∞∑
n=N+1

[
e−ν|x−ξ |

ν
− e−h1|x−ξ |

h1

]
sin(νy) sin(νη)

∣∣∣∣∣
≤

∞∑
n=N+1

h1e−ν|x−ξ | −νe−h1|x−ξ |

νh1
<

∞∑
n=N+1

h1e−ν|x−ξ | −νe−h1|x−ξ |

ν2
.

Since values of the parameter h1 =
√

ν2+k2
1 never exceed the quantity of ν+k1 (the triangle

inequality), the above estimation can further be developed as

|RN(x, y; ξ, η)| <

∞∑
n=N+1

1

ν2
[(ν+k1)e

−ν|x−ξ | −νe−(ν+k1)|x−ξ |]
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= [1−e−k1 |x−ξ |]
∞∑

n=N+1

1

ν
e−ν|x−ξ | + k1

∞∑
n=N+1

1

ν2
e−ν|x−ξ |

≤ [1−e−k1|x−ξ |]
∞∑

n=N+1

1

ν
e−ν|x−ξ | + k1

∞∑
n=N+1

1

ν2

= b

π
[1−e−k1|x−ξ |]

[ ∞∑
n=1

1

n
e− nπ

b |x−ξ | −
N∑

n=1

1

n
e− nπ

b |x−ξ |
]

+ k1
b2

π2

[ ∞∑
n=1

1

n2
−

N∑
n=1

1

n2

]
.

Recalling standard summation formulas for the two infinite series in the above estimation,
we complete the evaluation procedure for the remainder of the first series in (17) as

|RN(x, y; ξ, η)| <
b

π

{
[e−k1|x−ξ | −1]

[
log

(
1−e− π

b
|x−ξ |

)

+
N∑

n=1

1

n
e− nπ

b
|x−ξ |

]
+ k1

b

π

[
π2

6
−

N∑
n=1

1

n2

]}
. (18)

As it is clearly seen, the estimation we arrived at is not uniform. Indeed, it varies with
the distance d = |x −ξ | between the observation point and the source point. Let UN(d) be
the right-hand side of the above inequality, representing the upper bound for |RN(x, y; ξ, η)|.
Figure 1 shows the graphs of the relative error

E(d) = 103 × UN(d)

max
∣∣∣∑∞

n=1

[
1
h1

e−h1|x−ξ | − 1
ν
e−ν|x−ξ |

]
sin(νy) sin(νη)

∣∣∣
for the first series in (17) computed for several values of the truncation parameter N (the
parameter k1 is fixed at the value of 0·1). Clearly, the error E(d), being really small even
at the immediate vicinity of the source point, rapidly goes to zero as d increases (even for
N = 25). Figure 1 presents clear evidence of a uniform convergence of the first series in (17),
which can subsequently be accurately computed by a direct truncation.

As to the second series of (17), it is not uniformly convergent. Indeed, it diverges when
(x, y) = (ξ, η) and its computability would be notably affected if the series is used in its
current form. The situation can, however, be radically improved by a complete summation of
that series, which yields

1

b

∞∑
n=1

1

ν
e−ν|x−ξ | sin(νy) sin(νη) = 1

2π
log

|eπ(z−ζ )/b −1|
|eπ(z−ζ )/b −1| ,

where z and ζ are again the observation and the source point, respectively. This results in a
readily computable form for the first diagonal entry G11(x, y; ξ, η) of the matrix of Green’s
type. It is finally obtained as

G11(x, y; ξ, η) = 1

2π
log

|eπ(z−ζ )/b −1|
|eπ(z−ζ )/b −1| + 1

b

∞∑
n=1

[
e−h1|x−ξ |

h1
− e−ν|x−ξ |

ν

]
sin(νy) sin(νη)

+ 1

b

∞∑
n=1

(h1−λh2)eh1(x+ξ)

h1(h1+λh2)
sin(νy) sin(νη). (19)
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Figure 1. Relative error caused by truncation of the series in Equation (15).

Figure 2. Profile of the influence function computed by truncation (N =20) of the series in Equation (15).

For the second diagonal entry G22(x, y; ξ, η), we analogously obtain a computable form
as

G22(x, y; ξ, η) = 1

2π
log

|eπ(z−ζ )/b −1|
|eπ(z−ζ )/b −1| + 1

b

∞∑
n=1

[
e−h2|x−ξ |

h2
− e−ν|x−ξ |

ν

]
sin(νy) sin(νη)

+ 1

b

∞∑
n=1

(λh2−h1)e−h1(x+ξ)

h2(h1+λh2)
sin(νy) sin(νη). (20)

To demonstrate the computational effect achieved by the splitting off of the singular terms
in the diagonal entries of the matrix of Green’s type, in Figures 2 and 3 we depicted the
field generated by a unit source located at the point (−1·0, 0·75) in D1, with the rest of the
parameters in the setting chosen as: λ = 10, k1 = 1·0, and k2 = 0·0. Figure 2 shows the field
computed by a direct truncation of the series in Equation (15) with the truncation parameter
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Figure 3. Smoothing attained by spliting off the singular component of the influence function.

Figure 4. Profile of the influence function computed by truncation (N =20) of its series representation.

N =20, whereas the field depicted in Figure 3 was obtained by using Equations (19) and (20)
where only the tenth partial sum was accounted for in the series expansions of the regular
components. It is evident that the accuracy of the field shown in Figure 2 is unacceptably low,
especially in a certain vicinity of the source point, whereas the splitting off of the singular
terms radically eliminates the drawback.

Another illustration of the effect that is achieved by splitting off singular components of
influence functions is given in Figures 4 and 5 (half-plane-shaped plate with a semi-circular
cut-out). The problem setting assumes the Newtonian convection condition imposed on the
contour of the cut-out. A pure series form, with the truncation parameter N = 20, is used in
Figure 4, whereas Figure 5 shows the field computed with the singular components split off
and the tenth partial sum accounted for in the series expansions of the regular components.

2.2. SEMI-INFINITE STRIP-SHAPED PLATE

Consider a plate whose middle plane occupies the semi-infinite strip-shaped region D={−a<

x < ∞, 0 < y < b} composed of the rectangular fragment D1 = {−a < x < 0, 0 < y < b}
and the semi-strip D2 = {0 < x < ∞, 0 < y < b}. The ideal thermal contact as simulated by
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Figure 5. Smoothing delivered to the influence function by spliting off its singular component.

(3) is assumed on the interface x = 0, while boundary conditions on the edges y = 0, y = b,
x = −a, and as x approaches infinity are given by

ui(x, 0) = 0,
∂ui(x, b)

∂y
= 0, (i = 1, 2), (21)

∂u1(−a, y)

∂x
−βu1(−a, y) = 0, β ≥ 0, |u2(∞, y)| < ∞. (22)

To find the solution to the problem defined by (3), (4), (21), and (22), the functions ui(x, y)

and fi(x, y) are expanded in Fourier series as shown in (5) and (6) where, in this case, the
summation parameter ν is defined as

ν = (2n−1)π

2b
, i = 1, 2

satisfying the boundary conditions of (21).
With this, one arrives at the differential equation

d2u1,n(x)

dx2
−(ν2+k2

1)u1,n(x)=−f1,n(x), x ∈(−a, 0) (23)

for the coefficients u1,n(x) of the series in Equation (5), while the differential equation in (8)
governs the coefficients u2,n(x). The boundary conditions of (22) result in

dui,n(−a)

dx
− βui,n(−a) = 0, |u2,n(∞)| < ∞ (24)

and the contact conditions in (3) reduce to those shown in (10).
Tracing out the procedure of Section 2.1, we obtain the solution to the boundary-contact-

value problem as defined by (8), (10), (23), and (24) in the form

u1,n(x) =
∫ 0

−a

gn
11(x, ξ)f1,n(ξ)dξ +

∫ ∞

0
gn

12(x, ξ)f2,n(ξ)dξ
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and

u1,n(x) =
∫ 0

−a

gn
21(x, ξ)f1,n(ξ)dξ +

∫ ∞

0
gn

22(x, ξ)f2,n(ξ)dξ,

where the kernel functions gn
ij (x, ξ) are found to be

gn
11(x, ξ)= 1

2h1	

{
(h1+β)

[
(h1+λh2)e

−h1|x−ξ | +(h1−λh2)e
h1(x−ξ)

]
e2h1a

+(h1−β)
[
(h1−λh2)e

h1|x−ξ | +(h1+λh2)e
−h1(x+ξ)

]}
, (25)

with x and ξ belonging to the segment [−a, 0],

gn
12(x, ξ) = λ

	

[
(h1+β)eh1(x+2a) +(h1−β)e−h1x

]
e−h2ξ , (26)

with x ∈ [−a, 0] and ξ ∈ [0,∞)

gn
21(x, ξ) = 1

	

[
(h1+β)eh1(ξ+2a) +(h1−β)e−h1ξ

]
e−h2x, (27)

with ξ ∈ [−a, 0] and x ∈ [0,∞), and

gn
22(x, ξ) = 1

2h2	

{
(h1 + β)

[
(h1+λh2)e

−h2|x−ξ | −(h1−λh2)e
−h2(x+ξ)

]
e2h1a

− (h1 − β)
[
(h1−λh2)e

−h2|x−ξ | −(h1+λh2)e
−h2(x+ξ)

]}
, (28)

with x and ξ belonging to the segment [0,∞).
The parameter 	 in (25–28) is given as

	 = (h1+β)(h1+λh2)e
2h1a +(h1−β)(h1−λh2).

This leads finally to the solution of the original boundary-contact-value problem posed by
(3), (4), (21), and (22), as expressed in the form

ui(x, y) =
∫ π

0

∫ 0

−a

Gi1(x, y; ξ, η)f1(ξ, η)dξdη

+
∫ π

0

∫ ∞

0
Gi2(x, y; ξ, η)f2(ξ, η)dξdη, (x, y)∈Di, i =1, 2,

where the kernel functions are given by

Gij (x, y; ξ, η) = 2

b

∞∑
n=1

gn
ij (x, ξ) sin(νy) sin(νη), ν= (2n−1)π

2b
, (29)

with gn
ij (x, ξ), (i, j = 1, 2) given by (25–28). This represents the influence function of a

point source for the plate under consideration. As to the singular components of the diagonal
entries G11(x, y; ξ, η) and G22(x, y; ξ, η), they can be split off in a manner similar to that
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used in Section 2.1.1, which makes the above representation readily usable for computer
implementations.

Influence functions of a point source, which have been or might be obtained by the tech-
nique proposed in this study, are helpful in solving various settings in thermal science. In the
next section we discuss some of such statements for perforated plates. Another opportunity of
utilization of influence functions is associated with a setting where a finite set of heat sources
are acting simultaneously.

Consider again the plate composed of the fragments D1 = {−a < x < 0, 0 < y < b} and
D2 ={0<x <∞, 0<y <b}. Let a finite number m1 of sources of intensities K

(1)
j be in action

at points (ξj , ηj )∈D1, with j =1,m1, while a finite number m2 of sources of intensities K
(2)
j

are acting at points (ξj , ηj )∈D2, with j =1,m2.
By the superposition principle, the aggregate field W1(x, y) generated in D1 by all the

point sources is, in this case, defined as

W1(x, y) =
m1∑
j=1

K
(1)
j G11(x, y; ξj , ηj ) +

m2∑
j=1

K
(2)
j G12(x, y; ξj , ηj ),

while for the aggregate field W2(x, y) generated in D2, we have

W2(x, y) =
m1∑
j=1

K
(1)
j G21(x, y; ξj , ηj ) +

m2∑
j=1

K
(2)
j G22(x, y; ξj , ηj ),

where the kernel functions Gij (x, y; ξ, η) are defined by Equation (29). In Section 3.1 we
demonstrate practical aspects of using this algorithm for computing thermal fields generated
with multiple point sources in compound plates which, in addition, are weakened by apertures.

3. Perforated plates

The purpose in this section is to develop a numerical procedure for computing thermal fields
generated by either point sources in compound plates weakened by apertures or by some non-
zero boundary conditions imposed on apertures, or even combinations of these. Matrices of
Green’s type previously constructed for solid compound plates of standard shape (of the kind
that have been discussed in Section 2) will be used herein as a basis for the procedure.

We consider a compound plate with a middle plane occupying the semi-infinite strip-
shaped region D =D1 ∪ D2 considered in Section 2.2. The plate is weakened by an aperture
of smooth contour L located in D1, and is undergoing a point source of intensity K acting
at (x0, y0) ∈ D2 (see Figure 6). Note that the procedure to be developed is not limited to the
above setting and such a specific location of the point source and the aperture are chosen just
for the sake of fixing the presentation.

The boundary conditions on the outer contour of the plate are assumed to be those of (21)
and (22), while the contact conditions on the material interface x = 0 are given by (3). The
boundary condition on the edge L of aperture is imposed as

u1(x, y) = 0, (x, y) ∈ L. (30)

Clearly, the thermal field generated in the plate by a point source is determined by the
matrix of Green’s type of the boundary-contact-value problem stated by the Equations (3),
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Figure 6. To the statement of the problem in Equations (3), (4), (21), (22), and (30).

(4), (21), (22), and (30). Since the source point is, in this setting, placed in D2, the second
column(

G̃12(x, y; x0, y0) G̃22(x, y; x0, y0)
)T

of that matrix is the one that should be looked for and we express it in the form(
G̃12(x, y; x0, y0)

G̃22(x, y; x0, y0)

)
= K

(
G12(x, y; x0, y0)

G22(x, y; x0, y0)

)
+

(
g12(x, y)

g22(x, y)

)
, (31)

where G12(x, y; x0, y0) and G22(x, y; x0, y0) are the entries of the second column of the
matrix of Green’s type that is defined by (29).

From (31), it follows that the regular components g12(x, y) and g22(x, y) ought to be
solutions of the homogeneous equations corresponding to those in (4), and have to satisfy
the following boundary and contact conditions

gi2(x, 0) = 0,
∂gi2(x, b)

∂y
= 0, (i = 1, 2), (32)

∂g12(−a, y)

∂x
−βg12(−a, y) = 0, |g22(∞, y)| < ∞, (33)

g12(0, y) = g22(0, y),
∂g12(0, y)

∂x
= λ

∂g22(0, y)

∂x
, (34)

g12(x, y) = −KG12(x, y; x0, y0), (x, y) ∈ L. (35)

We express g12(x, y) and g22(x, y) by means of the single-layer-type potential representa-
tion(

g12(x, y)

g22(x, y)

)
=

∫
F

µ(ξ, η)

(
G11(x, y; ξ, η)

G21(x, y; ξ, η)

)
dF(ξ, η), (36)

where the density function µ(ξ, η) has yet to be found. The integration line F in (36) is a
smooth closed curve which entirely belongs to the interior of L (see Figure 6) and is referred
to herein as the fictitious contour.
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Inasmuch as the kernel of the representation in (36) consists of the entries of the matrix
of Green’s type given by (29), the functions g12(x, y) and g22(x, y) satisfy the relations in
(32–34). And, since the aperture L is located in D2, the boundary condition of (35) results in
the following functional (integral type) equation

−KG12(x, y; x0, y0) =
∫

F

G11(x, y; ξ, η)µ(ξ, η)dF(ξ, η), (x, y) ∈ L (37)

in the density function µ(ξ, η). As to a numerical solution of this equation, it has to be
pointed out that the set of integration points (ξ, η) ∈ F is different from the set of field
points (x, y) ∈ L in (37). This makes the kernel G11(x, y; ξ, η) a regular function and,
thus, a numerical solution of Equation (37) should not be a problem for a fixed shape and
position of the fictitious contour. The only concern that remains is how the spacing of F

affects the accuracy level of the described procedure. Some specific suggestions on this and
other important computational details in this procedure are addressed in the next section.

3.1. VALIDATION PROBLEM AND ILLUSTRATIVE EXAMPLES

To focus on numerical aspects of the algorithm and to find optimal values of its computational
parameters, a validation problem is stated, namely one that allows an exact solution. That is,
we consider the semi-infinite strip-shaped region D with an aperture as shown in Figure 6.
Let the contour L be an ellipse defined as

(x − xc)
2

a2
0

+ (y − yc)
2

b2
0

= 1 (38)

and the boundary and contact conditions on the outer contour of D and on the material
interface x = 0 be those defined by (3), (21), and (22), while the boundary condition on L

be specified as

u1(x, y) = 
(x, y), (x, y) ∈ L. (39)

It appears that we can readily formulate a validation problem for the setting in (3), (4),
(21), (22), and (39). This can be done with the aid of the matrix of Green’s type derived in
(29). Indeed, it is evident that, if the right-hand side function 
(x, y) in (39) represents the
trace of the entry G11(x, y; x0, y0) of that matrix of Green’s type, that is,


(x, y) = G11(x, y; x0, y0), (x, y) ∈ L,

with the source point (x0, y0) arbitrarily located inside the aperture, then the entries G11(x, y;
x0, y0), with (x, y) ∈ D1, and G21(x, y; x0, y0), with (x, y) ∈ D2, represent the exact solution
to the boundary-contact-value problem defined by (3), (4), (21), (22), and (39). This is true
because the region D that we consider does not include the interior of L, where the source
point is located (recall that the component G11(x, y; x0, y0) is not supposed to satisfy the
governing equation (4) if (x, y) coincides with (x0, y0) which is not the case under the given
circumstances).

In compliance with the algorithm proposed in Section 3, the approximate solution to the
problem defined by (3), (4), (21),(22), and (39) is sought as(

u1(x, y)

u2(x, y)

)
=

∫
F

(
G11(x, y; ξ, η)

G21(x, y; ξ, η)

)
µ(ξ, η)dF(ξ, η), (x, y) ∈ D. (40)
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Table 1. Accuracy attained for the setting in Equations (3), (4), (21),(22), and (39).

Number M of x coordinate of the field point on the line y = yc

quadrature nodes −2·00 −1·75 −1·70 −0·70 −0·65 0·00 1·00

10 0·08411 0·12721 0·14199 0·13247 0·11663 0·01543 0·00813

20 0·08603 0·12929 0·14199 0·13247 0·11865 0·01573 0·00827

30 0·08624 0·12973 0·14199 0·13247 0·11910 0·01576 0·00829

Exact value 0·08628 0·12986 0·14199 0·13247 0·11922 0·01576 0·00829

To find the density function µ(ξ, η) in the above potential, we take the limit in (40) as (x, y)

approaches L. With this, we arrive at the following functional (of integral type) equation

G11(x, y; x0, y0) =
∫

F

G11(x, y; ξ, η)µ(ξ, η)dF(ξ, η), (x, y) ∈ L (41)

in µ(ξ, η).
So, once a numerical solution of (41) is obtained, approximate values of u1(x, y) and

u2(x, y) can be computed by carrying out a numerical integration in (40). And this reveals the
accuracy level provided by the algorithm, since the approximate solution that is so obtained
can be compared with the exact one which is available in this case.

The standard trapezoidal rule, with M representing the number of quadrature nodes uni-
formly spaced on the fictitious contour F , has been used for computing the line integrals
in (40) and (41). As our experience convincingly suggests, in finding an optimal shape and
location of the regularizing contour F , we can limit ourselves to circles concentric with L.
And this appears to be true for a broad range of aperture shapes.

Table 1 illustrates the accuracy level attained with our approach. We considered a setting in
which the physical and geometrical parameters have been chosen as: a = 3·0, b = 3·0, k1 =
1·0, k2 = 0, β = 1·0, λ = 10·0, xc = −1·2, yc = 1·5, a0 = 0·5, and b0 = 0·7. The
optimal value R0 of the radius of the fictitious contour F was found to be R0 = 0·45. Values
of the approximate solution have been computed at a set of field points that are spaced in a
nonuniform fashion on the line y = yc passing through the center of the aperture. We focused
on the immediate vicinity of the aperture to find out if the accuracy is affected by the closeness
of the field point to the aperture.

The most evident observations that follow from the data in Table 1 are:
(i) the optimal radius R0 of the fictitious contour F is recommended to be at a level of about
90% of the minimal radius of aperture L;
(ii) the overall accuracy level increases notably when the number M of the quadrature nodes
increases (compare the data by the rows);
(iii) the accuracy slightly drops as the field point approaches the contour L, remaining however
relatively high (at about 0·1% level), even for the points closely located to L (observe the
second and the fifth columns);
(iv) the accuracy reaches its highest overall level when the field point lies on L, even for the
lowest number (M = 10) of the quadrature nodes.

Note that the last observation is not surprising; it follows from the nature of the algorithm,
inasmuch as the Equation (41) emerges from the “exact” satisfaction of the boundary condition
in (39).



Influence functions of a point source for perforated compound plates 267

Figure 7. Thermal field generated by point sources in the compound plate having an aperture.

Recommendations about the key computational parameters (M and R0) that follow from
the above validation setting are helpful in solving other problems. Let us, for example, com-
pute a potential field generated by a finite number of point sources in the compound plate
whose middle plane is shown in Figure 6. Let the contour L ∈ D1 of the aperture be specified
by Equation (38) and m point sources of different intensities Ki be put at points (xi, yi) in D2.

The algorithm proposed in Section 3 has been utilized for computing the field, with a few
modifications. That is, the first additive component of (31) reads, in this case, as

m∑
i=1

Ki

(
G12(x, y; xi , yi)

G22(x, y; xi , yi)

)
.

The boundary condition of Equation (35) transforms into

g12(x, y) = −
m∑

i=1

KiG12(x, y; xi , yi), (x, y) ∈ L

and Equation (37) reads as

−
m∑

i=1

KiG12(x, y; xi , yi) =
∫

F

G11(x, y; ξ, η)µ(ξ, η)dF(ξ, η), (x, y) ∈ L.

Figure 7 depicts the field generated by two sources in the compound plate whose middle
plane occupies the region D=D1∪D2 considered in Section 2.2. The intensities of sources are
K1 = 3·0 and K2 = 2·0. The shape and location of the aperture are given as: xc =−1·5, yc =
1·8, a0 = 0·7, and b0 = 0·5. The rest of the parameters in the setting are: a = 4·0, b =
π, k2

1 = 0, k2
2 = 1·0, β = 1·0, λ= 10·0, and R0 = 0·45. This example reveals the potential of

the proposed algorithm in computing temperature fields generated by multiple heat sources in
a compound perforated plate. Our experience in dealing with a variety of problem settings of
the considered type indicates that sources of different intensities located in different fragments
of a compound plate can be successfully treated with the proposed approach.

The field in Figure 8 is generated by three unit sources in the plate of half-plane shape
consisting of two fragments D1 = {0 < r < a, 0 < φ < π} and D2 = {a < r < ∞, 0 < φ <

π}, each of which is filled in with a different isotropic homogeneous material and hosts an
aperture. Dirichlet boundary conditions are imposed on the edge of the half-plane and on the
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Figure 8. Point sources in a compound plate occupying half-plane and hosting two apertures.

contours of the apertures. The heat conductivity of the material of D1 is ten times that of D2

(λ= 0·1). The matrix of Green’s type for the solid compound half-plane plate, whose entries
were used as kernels of an integral representation of the solution for the perforated plate, has
been constructed with aid of the technique described in [2, Chapter 7].

We complete this presentation by demonstrating the use of influence functions computed
herein in determining temperature fields that occur in a perforated compound plate and are
generated not necessarily by point sources but rather by some nonzero boundary conditions
imposed on the apertures contours.

Let the compound plate as considered in Section 2.2 be weakened by two apertures (L1 ∈
D1 and L2 ∈ D2) subject to the boundary conditions

u1(x, y) = T1, (x, y) ∈ L1 and u2(x, y) = T2, (x, y) ∈ L2

and let the plate’s edges x = −a, y = 0, y = b and the material interface x = 0 be subject
to the boundary and the ideal contact conditions of (21), (22) and (3). The temperature field
in the plate is expressed in the potential form

ui(P ) =
∫

F1

Gi1(P ;Q)µ1(Q)dF1(Q) +
∫

F2

Gi2(P ;Q)µ2(Q)dF2(Q), P ∈ Di, i = 1, 2

with the kernel functions Gij (P ;Q) being defined by (29). Upon satisfying the boundary
conditions imposed on L1 and L2, one arrives at a system of functional equations in the
densities µ1(Q) and µ2(Q) of the above potential.

In Figure 9, the field is shown as computed for the plate weakened by two congruent elliptic
apertures that are symmetrically spaced about the material interface x = 0, with the following
set of initial data applied: a = 4·0, b = π, k2

1 = 1·0, k2
2 = 1·0, β = 2·0, λ = 0·1, T1 = 100

and T2 = 150.

From our experience in solving the problem class considered in this study, it follows that
aperture configurations, their sizes, number and locations along with spacing and intensities
of heat sources do not represent limiting factors in the proposed algorithm. As to shapes and
locations of fictitious contours, we have found that in most cases these could be fixed as circles
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Figure 9. Semi-strip-shaped compound plate with apertures.

concentric with the contours of apertures, while their optimal radii are about 0·90 − 0·95 of
the smallest radius of the actual aperture.

4. Closing remarks

This project further extends the application area of influence functions in thermal sciences. It
has been motivated by the creative potential that influence functions bring to both theory and
practice. The study has primarily been aimed at:
(i) extension of our earlier elaborations on analytical construction of influence functions of a
point source to plates of standard shape made of materials with piecewise constant physical
properties and experiencing Newtonian convection through facial surfaces;
(ii) development of effective numerical procedures for computing influence functions for
plates of standard configuration, but containing apertures making pure analytical approach
problematic if not impossible;
(iii) demonstration of the computational potential of influence functions in solving applied
problems in thermal sciences.

The study builds up a confidence in the constructive nature of the proposed representations
of influence functions of a point source and suggests further ways of their effective utilization
in thermal sciences. Some nonlinear problems, for example, or some classes of inverse formu-
lations can be targeted, for which the availability of fast and accurately computable influence
functions of the corresponding linear or direct formulations is absolutely crucial.
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